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Abstract— Recent works of non-rigid registration have shown
promising applications on tasks of deformable manipulation.
Those approaches use thin plate spline-robust point matching
(TPS-RPM) algorithm to regress a transformation function,
which could generate a corresponding manipulation trajectory
given a new pose/shape of the object. However, this method
regards the object as a bunch of discrete and independent
points. Structural information, such as shape and length, is lost
during the transformation. This limitation makes the object’s
final shape to differ from training to test, and can sometimes
cause damage to the object because of excessive stretching. To
deal with these problems, this paper introduces a tangent space
mapping (TSM) algorithm, which maps the deformable object
in the tangent space instead of the Cartesian space to maintain
structural information. The new algorithm is shown to be robust
to the changes in the object’s pose/shape, and the object’s final
shape is similar to that of training. It is also guaranteed not
to overstretch the object during manipulation. A series of rope
manipulation tests are performed to validate the effectiveness
of the proposed algorithm.

I. INTRODUCTION

Manipulation of deformable objects, such as tying a rope
and folding clothes, is still a challenging task for robots. The
major difficulty lies in that the initial state (pose/shape) of the
object differs from training scene to test scene. Therefore the
taught manipulation trajectory at training cannot be directly
applied during the test. A transformation procedure on the
manipulation trajectory is required.

Schulman et al. [1] showed that existing non-rigid registra-
tion methods in the field of computer vision could be utilized
on this robotics problem. Specifically, they used the thin
plate spline-robust point matching (TPS-RPM) algorithm [2]
to find a registration function f which mapped the training
object and the test object, then transformed the training
trajectory by the function f to get a new manipulation
trajectory suitable for the test scenario. Several follow-up
works [3]–[6] improved the original method by modifying
the optimization objective or adding some more constraints
in the TPS-RPM formulation. Most of them followed the
same procedures: (1) find a registration function (2) warp
the trajectory by the function. Both steps were performed in
the Cartesian space.

However, this computer vision oriented method regards the
physical object as a bunch of discrete and independent points,
while dismissing the object’s local physical properties, such
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Fig. 1. Rope manipulation by TPS-RPM and TSM-RPM. Red solid line
shows the deformable rope, and green line is the manipulation trajectory.
One end of the rope is fixed at the origin. (a) At training scene, the robot
is taught to manipulate the L-shaped rope into a vertical straight line. (b)
At test scene, TPS-RPM shrinks/extends the space in the horizontal/vertical
direction, so as to register the training scene and the test scene. The training
trajectory is warped in the same way to get the test trajectory, which
overstretches the rope during manipulation. (c) The proposed TSM-RPM
algorithm maps the scenes in the tangent space. The Cartesian space length
is maintained during transformation. It manipulates the rope into a straight
line without overstretching.

as curvatures and distances between points. As a result, the
transformed trajectory might not manipulate the object into
a similar shape as shown at training. Overstretch and over-
compression might also occur because the trajectory is gen-
erated without considering the object’s physical limitations.
In practice, these accidents could cause serious damage to
the object or to the robot.

Take rope manipulation (Fig. 1) as an example. The initial
shape of the rope is slightly changed from training scene to
test scene. The TPS-RPM algorithm tries to register the two
scenes by shrinking the Cartesian space in the horizontal
directional while expanding in the vertical direction. As a
result, it shrinks/expands the training trajectory in the same
way to get the test trajectory (green line in Fig. 1(b)).
This warped trajectory, however, violates the rope’s length
constraint and overstretches the rope during manipulation.

To deal with this problem, this paper proposes a new tra-
jectory transformation method called tangent space mapping-
robust point matching (TSM-RPM). Instead of mapping the
training scene and the test scene in the Cartesian space, the
registration is performed in the tangent space to maintain the
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structural information of the object. At test, the TSM-RPM
algorithm has a better manipulation performance compared
to TPS-RPM. It is able to manipulate the object into a similar
shape as training, and is guaranteed not to overstretch the
object during manipulation.

The remainder of this paper is organized as follows:
Section II introduces the previous works of deformable
manipulations, with a focus on the TPS-RPM methods.
Section III describes the TPS-RPM algorithm for non-rigid
registration, and the trajectory generation procedure by non-
rigid transformation. In Section IV, the TSM-RPM algorithm
is introduced in details. An invariance theorem is proposed
and the object’s length is proved to be constant during
manipulation. Section V compares TPS-RPM and TSM-
RPM by a series of rope manipulation tests, which validate
the effectiveness of the proposed method. Supplementary
videos can be found at [7]. Section VI concludes the paper
and proposes future works.

II. RELATED WORK

Manipulation of deformable objects has been a subject of
robotics research for decades. Researchers have addressed
this problem with many different methods, such as motion
planning [8]–[10], knot theory [11]–[13] and multi-finger
robotic hands [14], etc.

Moll et al. [8] constructed a motion planner for one-
dimensional deformable objects by minimal energy optimiza-
tion. They used the minimal energy model to estimate the
dynamics of the rope and plan the trajectory with endpoint
constraints. Morita et al. [11] developed a Knot Planning
from Observation (KPO) system which estimated the states
of the rope from the vision feedback by knot theory. The
primitive movements were also predefined to change the
states of the rope. Kudoh et al. [14] built a multi-finger
hand and programmed skill motions by observing human
knotting procedures. They realized the three dimensional in-
air knotting with different types of knots.

Many of these methods, however, require empirical laws
and are developed for a specific task, which is not easy to
generalize for other tasks. For generalization, Schulman et
al. [1] proposed a non-rigid registration method to teach
the robot to manipulate the deformable objects by human
demonstration. As described in Sectoin I, their method used
TPS-RPM to transfer the original trajectory (taught by human
demonstration) to get a new manipulation trajectory which
was suitable for the test scene. This method has been suc-
cessfully implemented on several tasks, such as tying ropes,
folding clothes and opening bottles with various initial states.
Since then, many follow-up works improved the non-rigid
registration based method. Lee et al. [3] extended Schulman’s
approach by jointly optimizing the non-rigid registration
and the trajectory optimization into a single optimization
framework, such that the resulting trajectory is smoother
given obstacles. Lee et al. [6] then incorporated the normals
into the objective function to find a better registration to
ensure that the robot gripper is vertical to the operation
surface. Huang et al. [4] proposed an approach to learn the

relevant appearance information of the deformable object
by deep learning, and to use this additional information to
improve the quality of non-rigid registration.

III. DEFORMABLE MANIPULATION BY TPS-RPM

A. Non-rigid Registration

Non-rigid registration [15] is a class of methods that
register two point clouds with non-rigid deformation. There
are two problems to be addressed: given two point clouds,
what is the correspondence between the points in one cloud
to those in the other, and what is the proper transformation
function such that after transformation, the distance between
corresponding points is minimized.

The TPS-RPM algorithm is one of the well-known non-
rigid registration methods which could approach to the local
optimum of registration efficiently. Suppose there are two
objects described by point clouds X and Y , consisting of
{xi ∈ Rn, i = 1,2, · · · ,N} and {y j ∈ Rn, j = 1,2, · · · ,N′} in
n dimensional space. In TPS-RPM, the non-rigid transfor-
mation function f is constructed in a specific form of thin-
plate-spline (TPS [16]). The correspondence between X and
Y is denoted by a correspondence matrix M ∈R(N+1)×(N′+1).
Each element mi j ∈ [0,1] indicates if point xi corresponds to
point y j. mi j→ 0 means low correspondence, while mi j→ 1
represents high correspondence. The extra (N+1)th row and
(N′+1)th column of M are introduced to handle outliers.

The objective of TPS-RPM is to find the optimal M and f
that minimize the following fuzzy assignment-least squares
energy function [17],

min
M, f

N

∑
i=1

N′

∑
j=1

mi j‖y j− f (xi)‖2
2 +λ‖ f‖2

TPS

+T
N

∑
i=1

N′

∑
j=1

mi j logmi j (1)

s.t.
N+1

∑
i=1

mi j = 1,
N′+1

∑
j=1

mi j = 1,mi j ≥ 0 (2)

where ‖ f‖2
TPS measures the curvature of the thin-plate-spline,

‖ f‖2
TPS =

∫
dx‖D2 f (x)‖2

Frob (3)

In the objective function (1), λ controls the trade-off
between the residual of the assignment and the smoothness
of the function. T is called the temperature parameter and
controls the fuzziness of the correspondence. In general,
smaller T forces the correspondences to be more binary and
less fuzzy.

The above formulation consists of two interlocking op-
timization problems: a fuzzy assignment problem on the
correspondence matrix M and a least-square problem on the
transformation function f . It is their combination that makes
the non-rigid registration problem difficult. At the expense
of only getting the local optimum, Chui et al. [2] solved
this problem by an alternating optimization algorithm, which
successively updated M and f separately while gradually
reducing λ and T .
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Fig. 2. Trajectory transformation by TPS-RPM on a 2-D example. Figure
courtesy of [1]. The transformation function f is regressed such that the
blue point clouds in the training scene and the test scene are mapped to
each other in the Cartesian space. The training trajectory is then warped by
the same function f to get the the manipulation trajectory used at test time.

The details of the TPS-RPM algorithm is as follows.
Step 1: Fix the transformation function f , update the

correspondence matrix M by

mi j =
1
T

exp
(
−
‖y j− f (xi)‖2

2
2T

)
(4)

and then iteratively normalize the row and column.
Step 2: Fix the correspondence matrix from Step 1, and

update the transformation. Drop the terms independent of f
in (1) to get the following least-square problem

min
f

N

∑
i=1

N′

∑
j=1

mi j‖y j− f (xi)‖2
2 +λ

∫
dx‖D2 f (x)‖2

Frob (5)

A simpler form is implemented instead for efficiency

min
f

N

∑
i=1
‖ỹi− f (xi)‖2

2 +λ

∫
dx‖D2 f (x)‖2

Frob (6)

with ỹi = ∑
N′
j=1 mi jy j. Equation (6) has a closed form mini-

mizer

f ∗(x) = ∑
i

aiσ(x− xi)+BT x+ c (7)

where σ is the kernel function. Details of solving the
minimizer’s parameters can be found in [16].

After each iteration, parameters λ and T are gradually
reduced according to a decreasing annealing schedule. The
process is repeated until the lower bound of T is reached.
The basic idea behind this heuristic is that more global and
rigid transformations should first be favored before allowing
more local non-rigid transformations.

B. Trajectory Transformation in Cartesian Space

By TPS-RPM, the point cloud of the deformable object at
training and that at test could be registered by the transfor-
mation function f . The same function is then utilized to warp
the demonstrated end-effector trajectory, so as to achieve a
new trajectory suitable for the test scene (see Fig. 2). Suppose
the demonstrated end-effector trajectory is represented as a
series of poses {T1,T2, · · · ,TT}, where each pose Tt consists

Training
(Human Demonstration)

Test
(Robot Reproduction)

Test
(Robot Reproduction)

(a) Training scene

(b) Testing scene
using TPS-RPM

(c) Testing scene
using TSM-RPM

Fig. 3. Example of Rope manipulation by TPS-RPM and TSM-RPM. Red
solid line shows the deformable rope, and green line is the manipulation
trajectory. One end of the rope is fixed at the origin. (a) At training
scene, the robot is taught to manipulate the L-shaped rope into a horizontal
straight line. (b) At test scene, TPS-RPM shrinks/extends the space in the
horizontal/vertical direction, so as to register the training scene and the test
scene. The training trajectory is warped in the same way to get the test
trajectory, which manipulates the rope into V-shape, not similar as training.
(c) The proposed TSM-RPM algorithm maps the scenes in the tangent
space. The curvature information is maintained during transformation. It
manipulates the rope into a straight line similar as training.

of a position term pt and an orientation term Rt . Then the
trajectory can be transformed by

ptest
t = f (ptrain

t ) (8)

Rtest
t = orth

(
J f (ptrain

t ) ·Rt

)
(9)

where J f (p) is the Jacobian matrix of f evaluated at position
p and orth(·) is a function that orthogonalizes matrices. Note
that if f is a rigid transformation Tf , then this trajectory
transformation procedure is equal to left-multiplying each
end-effector pose Tt by Tf .

This trajectory transformation method by TPS-RPM has
been successfully applied on many applications. However,
the next section will show that TPS-RPM has limitation in
keeping the object’s structural information, and thus a new
algorithm TSM-RPM is proposed.

IV. MANIPULATION BY TANGENT SPACE MAPPING

A. Tangent Space Mapping

For a deformable manipulation task, the object is not only
desired to move to a specific position or orientation, but also
expected to change the shape to a specific configuration.
Shape of the entire body is locally represented by the
curvatures of the object points. Therefore the structural infor-
mation which describes the relationship between one point
and its surrounding points is important for the manipulation
of the deformable object.

However, TPS-RPM regards the deformable object as a
bunch of discrete and independent points. It only takes the
points’ position information into account, while dismissing
the points’ interrelationship, such as curvatures and local
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distances. This fact limits the TPS-RPM method from being
able to manipulate the object under physical constraints
(details in Fig. 1) as well as manipulating the object into
a similar configuration as demonstrated at training (details
in Fig. 3).

To address this problem, this section introduces a new tra-
jectory transformation method called tangent space mapping-
robust point matching (TSM-RPM).

For the ease of explanation, here we take rope manipula-
tion on a plane as an example. As shown in Fig. 4, the rope
can be equivalently represented in the Cartesian space and
in the tangent space. Fig. 4(a) and Fig. 4(c) show the rope
at training scene and at test scene in the Cartesian space.
Fig. 4(b) and Fig. 4(d) are the tangent graphs of the rope,
where the horizontal axis is the arc length along the rope, and
the vertical axis is the direction of the unit tangent vector. In
this case, the rope’s unit tangent vector is one dimensional.

During training, the rope is manipulated from the initial
shape to the final shape. This training procedure can be
decomposed into several snapshots at different time frames.
At each time frame, a tangent graph of the rope can be
constructed (see Fig. 4(b)). At test time, the rope starts with a
different initial shape and consequently, a new initial tangent
graph. A transformation function fTSM could be found in the
tangent space that maps the initial tangent graph at training
to the initial tangent graph at test. That same function fTSM
can be utilized to warp the tangent graphs at training to get
the corresponding tangent graphs at test in subsequent time
frames.

After getting the tangent information of the rope at test,
the tangents are integrated along the arc length to convert
the tangent information into position information in order to
get the manipulation trajectory that robot should follow at
test time.

B. TSM-RPM Algorithm

This subsection introduces the mathematical formulation
of the TSM-RPM algorithm. Some notations of the tangent
vectors are built up first. For a d-dimensional object living in
n-dimensional space, φ t

i ∈Rn−d denotes the training object’s
tangent vector at point i and at time frame t. Similarly, the
test object’s tangent vector can be represented by ψ t

j ∈Rn−d ,
where j is the point index of the test object. The TSM-RPM
algorithm is formulated as follows.
Step 1: Run TPS-RPM algorithm in the tangent space
(1) During training, extract the object’s tangent vectors φ t

i
at each point i and each time frame t. At test, extract
the test object’s initial tangent vector ψ t=1

j at each point
j.

(2) Calculate the tangent space correspondence matrix M
and non-rigid transformation function fT SM that register
{φ t=1

i , i = 1,2, · · · ,N} to {ψ t=1
j , j = 1,2, · · · ,N′} by

iteratively solving Equations (4) and (7).
Step 2: Run tangent space mapping (TSM)
(1) Calculate the tangent vectors at test scene by non-rigid

transformation from the second time frame t = 2 to the
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the Test Rope in
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(d) Tangent Graphs of the Test Rope

Fig. 4. Rope in the Cartesian space and in the tangent space. t = 1,2,3,4
represents four time frames of rope manipulation. t = 1 is the initial time,
t = 4 is the final time.

last time frame t = t f inal

ψ
t
j =

N

∑
i=1

Mi j · fT SM(φ t
i ) ∀t = 2, · · · , t f inal (10)

(2) Calculate the grasping point at test. Suppose the robot
grasps the point iG of the object at training, then the
grasping point at training can be calculated by the
correspondence matrix

jG = argmax
j

M(iG, j) (11)

(3) Integrate the test tangents to get the Cartesian space
position of grasping point at each time frame

pt
jG =

jG

∑
j=1

Ψ
t
j ·δ j (12)

where δ j is the distance between neighbouring points.
Note that Ψ ∈ Rn is an unit vector, equivalent to
expressing ψ in n-dimensional space. Ψ is utilized here
so that the dimension is consistent to the Cartesian space
points. The new manipulation trajectory is given by
{pt

jG , t = 1,2, · · · , t f inal}
In practice, it is found that the correspondence matrix M′

that register the two point clouds in the Cartesian space can
directly serve as a good tangent space transformation. This
makes sense because the corresponding points of two objects
in the Cartesian space usually share the similar tangent
features. This special transformation is formulated as

ψ
t
j =

N

∑
i=1

M′i j ·φ t
i ∀t = 2, · · · , t f inal (13)
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Fig. 5. Illustration of the difference between TPS-RPM and TSM-RPM.
TPS-RPM tries to reallocate the positions of each points on the rope, which
can easily lead to overstretching and thus cause damage. TSM-RPM tries
to reassign the joint angles of the rope. No matter how much each joint is
twisted, the rope’s original length is maintained.

C. Invariance Theorem of the TSM-RPM algorithm

Objects like ropes can be considered as curves in differen-
tial geometry. This subsection will show that transformations
under TSM-RPM maintain the curve’s structural information
and thus keep the curve’s length invariant during manipula-
tion.

Theorem 1: The length of the curve is invariant under the
manipulation generated by TSM-RPM.

Proof: Assume the initial length of the curve at test
is Lt=1

test . The length becomes Lt
test at time frame t. For any

tangent vector Ψt ∈ Rn at time frame t, we have

|Ψt |= 1 (14)

Therefore,

Lt
test =

∫ Lt=1
test

0
|Ψt |dτ

=
∫ Lt=1

test

0
1 ·dτ

= Lt=1
test (15)

where dτ is the differential arc length of the curve.
Equation (15) indicates the length of the test curve always

keeps the initial value Lt=1
test , which is independent of the

training curve’s length Lt
train. This is a desired property since

even if the curve length changes from training to test (for
example, a long rope at training and a short rope at test),
the algorithm will manipulate the test curve under the test
length limitation despite of the training curve’s length.

This invariance theorem can also be intuitively understood
through Fig. 5. TPS-RPM regards the rope as a bunch of
discrete points and tries to relocate the position of each
point directly in the Cartesian space, which can lead to
overstretching the rope during manipulation. In contrast, the
TSM-RPM algorithm regards the rope as a long chain and
instead rotates the joint angle of each chain in the tangent
space. No matter how the angles are twisted, the rope’s length
does not change, i.e., length invariance. This is an important
feature because otherwise safety cannot be guaranteed during
robot manipulation.

To conclude, a new trajectory transformation method
TSM-RPM is introduced. It is inspired by TPS-RPM, but

different in the nature. The key difference is that the transfor-
mation takes place in the tangent space instead of Cartesian
space in order to maintain the object’s structural information.

V. SIMULATIONS AND RESULTS

To test the performance of the proposed TSM-RPM algo-
rithm, several rope manipulation tests are performed and the
results are analyzed in this section. Supplementary videos
can be found at [7].

The manipulation tasks are simulated in V-REP [18] and
the Bullet Physical Library [19] is selected as the physics
engine. In these tests, two robot arms (FANUC LR Mate
200iD/7L) collaborate each other to manipulate a single
red rope of length 40cm. The flexible rope is modelled
as twenty 2cm long cylinders connected sequentially by
spherical joints. At training, one robot arm fixes one end
of the rope, while the other arm is taught by human to
move the free end to manipulate the rope into a desired
shape. At test time, the initial pose and shape of the rope
are altered on purpose. The TSM-RPM and the TPS-RPM
algorithms generate new manipulation trajectories given the
test rope’s initial states. The correspondence matrix M and
transformation function f are calculated by solving (4) and
(7) iteratively, with T = 0.05 and λ = 1. T and λ are
decreased by multiplying an annealing rate of 0.93 after each
iteration. Iteration terminates if T ≤ 10−5.

As shown in Fig. 6(a), the first test is to manipulate a
curved rope into a straight line. The initial shape of the rope
at training is like a ‘L’, of which the two sides have equal
lengths. The test rope is also in L-shape, but one side is
longer than the other. During the test scene, the manipulation
trajectory (Fig. 6(b)) calculated by TPS-RPM moves the rope
to the correct direction, but the final shape is curved and not
similar to the one in training. The trajectory calculated by
TSM-RPM (Fig. 6(c)) not only moves the rope to the right
direction, but also manipulates to accurately reflect what was
demonstrated in training.

The second test is to wind the red rope around a blue
shaft. It is desired to wind the rope tightly around the shaft
without overstretching the rope during manipulation. Fig. 7
shows a segment of the winding task. The robot is taught to
bend the rope ninety degrees at training phase (Fig. 7(a)).
At test scene, the initial shape of the rope is changed. TPS-
RPM generates a trajectory to bend the new rope (Fig. 7(b)).
However, at time frame t = 3, overstretch occurs and the rope
breaks at time frame t = 4. In contrast, the TSM-RPM bends
the test rope tightly around the shaft without overstretching
the rope (Fig. 7(c)).

These tests show that compared to TPS-RPM, TSM-RPM
can manipulates the rope into a better final shape and does
not violate the length constraint. To quantitatively compare
TSM-RPM and TPS-RPM, a benchmark is designed as
shown in Fig. 8, which tests the two algorithms’ compu-
tation cost, the final shape quality, the stretch rate and the
robustness to the initial pose/shape change. At training, the
operator demonstrates a trajectory to manipulate the red rope
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(a) Train Scene

(b) Test Scene by TPS-RPM

(c) Test Scene by TSM-RPM

t = 1 t = 2 t = 4t = 3

Fig. 6. Manipulating the rope into a straight line (horizontal direction) over four time frames, t = 1,2,3,4. The initial shape of the rope is changed at
test. TPS-RPM manipulates the test rope into a strange shape. TSM-RPM performs as well as training.

t = 1 t = 4t = 3t = 2

(a) Train Scene

(b) Test Scene by TPS-RPM

(c) Test Scene by TSM-RPM

Stretch Break

Fig. 7. Bending the rope ninety degrees around the shaft. The initial shape of the rope is changed at test. TPS-RPM overstretches the test rope at time
frame t = 3 and the rope severs at t = 4. In contrast, TSM-RPM succeeds and does as well as training without incurring overstretching.

into a desired shape. At test, thousands of ropes with different
poses/shapes are constructed by the following rules:

(1) the root point’s position P0 (in both the x and y direc-
tions) is changed from -20cm to +20cm, at increments

of 10cm.
(2) The root point’s orientation θ0 is changed from −45◦

to +45◦, at increments of 15◦.
(3) The distance from the root point to the corner, L0, is
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Fig. 8. Test benchmark.

TABLE I
RESULTS OF ROPE MANIPULATIONS TEST BENCHMARK.

Mean and Mean and # of
Standard Deviation Standard Deviation Stretch

Registration Time(s) Shape Distortion(10−5)
TPS-RPM 0.2735±0.0093 2.915±1.955 3968
TSM-RPM 0.2763±0.0094 0.081±0.261 0

changed from 10cm to 30cm, at increments of 4cm.
(4) The corner angle θc is changed from +45◦ to +135◦,

at increments of 15◦

According to the construction rules, 7350 different ropes
are constructed and manipulated by TPS-RPM and TSM-
RPM respectively. Fig. 9 shows one trial of rope manipula-
tions in the test benchmark.

To quantify the similarity between the rope’s final shape
at training and at test, the non-rigid registration is performed
again on the two final shapes, and the objective value in (1)
is utilized to evaluate the shape distortion. The larger the
distortion value, the more dissimilar between the two final
shapes. Overstretch is detected by calculating the distance
between the two grippers of the two robot arms. If the
distance is larger than the rope length 40cm, the rope is
overstretched.

Table I shows the results of the test benchmark. For each
trial, the average registration time in TPS-RPM is 0.2735s.
TSM-RPM takes 0.2763s. The increased 1.02% computation
cost mainly comes from the reconstruction from the tangent
space to the Cartesian space. For shape distortion, TPS-RPM
has an average value of 2.915× 10−5, while TSM-RPM is
8.1×10−7, which means the TSM-RPM has a better ability
to manipulate the object into the configuration demonstrated
in training. In 7350 trials, overstretch occurs 3968 times
under TPS-RPM, while 0 time under TSM-RPM.

To conclude, these tests show that mapping in the tangent
space make TSM-RPM have the ability to ‘memorize’ the
shape of the object during training. At test, it will try
to generate a trajectory which recovers the object to the
configuration demonstrated at training. Therefore the final
shape is usually as good as training. Moreover, as proven
in invariance theorem, the manipulation trajectory generated
by TSM-RPM will not exceed the length limitation of the
object and therefore guarantee safety during manipulation.

x

y

x

y

(a) Trajectory generated by TPS-
RPM

x

y

x

y

(b) Trajectory generated by
TSM-RPM

Fig. 9. One trial of rope manipulations in the test benchmark.

VI. CONCLUSIONS AND FUTURE WORK

A TSM-RPM algorithm is proposed to teach the robot to
manipulate deformable objects given various initial states.
Compared to the TPS-RPM algorithm, TSM-RPM trans-
forms the manipulation trajectory in tangent space instead
of Cartesian space. Since the tangent describes the relation
between one point and its surrounding points, mapping in the
tangent space is able to maintain the object’s local geometric
properties. As a result, TSM-RPM can manipulate the test
object into the similar configuration demonstrated at training
time without fear of overstretching medium, as proven by
the length invariance theorem. Therefore, overstretching does
not occur and safety can be guaranteed during manipulation.
A series of rope manipulation tasks have been tested in
simulation to validate the performance of the proposed
method. In the future, we would like to test the algorithm on
more complicated experiments, such as rope knotting and
unknotting. Also we will test on high dimensional objects
such as clothes and soft sponges besides the rope.
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